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Abstract— The threat of hurricanes to the security and 
resiliency of power systems is increasing with climate change 
and global warming. Due to the complex relationship between 
the hurricane disaster and power outages, it is difficult for 
power system operators to predict outages accurately and 
allocate emergency supplies in advance. Therefore, establishing 
an efficient and effective approach to forecast power outage 
distribution is critical for hurricane mitigation and loss 
reduction. This paper proposes a machine-learning based 
prediction methodology based on the realistic historical 
hurricane outage data. The proposed methodology includes two 
parts: (1) rectifying gust via the power law, and (2) configuring 
stacked model based on machine learning algorithms and 
metrics optimization. In particular, the proposed gust 
rectification algorithm can improve the interpolation precision 
effectively. By implementing this configuration, the stacked 
model has a much better performance than the single model in 
the stacking processing. This model is trained by a 
comprehensive data set that consists of the information of 
hurricanes, power systems, and geography. In the case study, 
the realistic data of two historical hurricanes is applied to verify 
the developed model. The results demonstrate that the proposed 
methodology can improve the performance of power outage 
prediction effectively. 

Keywords—hurricanes, power outage prediction, gust 
rectification, power law, and stacked model 

I. INTRODUCTION  
Hurricanes have resulted in severe damages to America 

power systems and extensive economic losses for decades. 
For instance, hurricane Katrina in 2005 caused that 2.7 million 
people lost their power and the resulting total loss was up to 
$160 billion. Hurricane Sandy in 2012 led to a massive power 
outage in the Northeast and $70.2 billion loss in total. About 
8.5 million people experienced power outages [1-3]. 
Unexpected power outages not only cause huge economic 
losses, but also result in casualties and political incidents. 
Therefore, it is significant to develop an accurate 
methodology to predict power outages to mitigate hurricanes 
and reduce economic losses.  

The power loss due to outages is a critical metric in 
measuring power system resilience, as it indicates the ability 
of the electrical grid to provide adequate services under 
hurricanes [4-5]. Currently, some researchers have 
constructed the resilience models by incorporating the 
function of the outage prediction under hurricanes. The work 
of [6] applied the device failure models and power flow 
calculation using the Monte Carlo method to determine power 
outages. However, it is not applicable for complex systems 
due to its high computational cost. In [7], the capacity loss due 
to the damage of power plants was incorporated in the 
resilience model based on fragility cures. However, this 
model only considered wind speed and overlooked other 
information. Pre-hurricane allocation of generation resources 
was studied in [8] to evaluate system resilience based on the 
forecasted failure probabilities of devices. But the device 
failure is not a criterion of outages, since devices may be 

damaged in one place and power demand is in another. 
Therefore, the accurate location prediction of outages is of 
great importance in pre- and post-hurricane resources 
allocation. As known, the precise resilience measurement and 
practical enhancement planning strongly rely on the accurate 
outage prediction model. 

Due to the wide variety of features involved in outage 
prediction, the prediction model is difficult to develop with 
clear causality and physical meaning. In the existing studies, 
outage prediction models are usually developed using 
statistical methods.  Generalized linear models were explored 
solely or in combination to predict the outage risk in [9-10]. 
However, they mainly focused on the model fit and the 
applied variables were limited.  The Random Forests (RF) 
outage model was constructed in [11] with a simplified input 
from [12]. Since it did not include the utility-specific data, its 
applications is limited to the prediction of short-term outages. 
The reference [13-14] discussed the two-stage approach, 
which first applied the grid cell with outages to predict outage 
quantities. However, this approach highly relied on the 
classifier in the first stage and can decrease the prediction 
accuracy in some cases. Currently, the developed outage 
prediction models mainly use a single algorithm, which is not 
sufficient to present the prediction model accurately. 
Compared with the single algorithm, the hybrid algorithm has 
shown their superiority in damage prediction under hurricanes 
[15]. However, it has not been applied on the multi-model 
configuration to improve the performance of outage 
prediction yet. To fill this gap, this paper proposes a new 
outage prediction model based on the gust rectification and 
stacking algorithms that can reduce prediction errors 
effectively [16]. The comprehensive data set that is applied to 
generate the model consists of the information of hurricanes, 
power systems, and geography.  

Due to the strong correlation between distributions of 
outages and gusts, the gust distribution is of great significance 
to accurate outage prediction. In this paper, the power law 
distribution reflecting the change of wind speed with the 
altitude is first used to rectify the gust, as the altitude impact 
is overlooked when generating a gust map using interpolation. 
After gust rectification, a case study is given to verify the 
overall improvement of the prediction metrics. There are two 
layers in the stacked model that is developed using different 
machine learning algorithms. The first layer composed of RF, 
Gradient Boosting Decision Tree (GBDT), and Adaptive 
Boosting (AdaBoost) is to generate new explanatory variables 
by 2-fold cross-validation to avoid overfitting, and the second 
layer based on RF is to make the final prediction. The stacked 
model theoretically outperforms a single algorithm because it 
has comprehensive learning mechanisms and the metric to be 
optimized in each layer can be adjusted flexibly to achieve the 
best prediction.  

Compared with the existing methods, the proposed 
methodology applied the gust rectification algorithm, which 
ensures that the model can use both the high-resolution gust 
data and the gust data interpolated from low-resolution data. 
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This can greatly enhance the adaptability of the model and 
maintain a good prediction performance even when the 
resolution of the gust data is not high. In the stacked model, 
the proposed hybrid model has a better performance than the 
single models in all predictive metrics by configuring the 
stacking structure and setting the optimization metrics.  

In practice, the target area is divided into multi grid-cells 
to capture the spatial correlation and prediction accuracy 
convenience [17]. In this manner, even a simple model like 
the logistic regression discussed in [18] can be used in a wide 
area by fitting each grid cell. Since the grid cells with a smaller 
size can capture the spatial correlation and make full use of 
the higher resolution of some data, this paper uses 1 km2 grid 
cell to ensure the accuracy of the proposed model [5]. The 
effectiveness of the proposed methodology is verified via the 
realistic data of two historical hurricanes and power outages. 
This methodology can help power system operators make 
planning decisions. 

This paper is organized as follows. Section II introduces 
the data and variable processing. Section III outlines the 
stacked model construction, metrics, and cross-validation 
testing. Section IV shows the testing results of outage 
prediction and verifies its effectiveness. Section V is the 
conclusion.   

II. DATA AND VARIABLES 

A. Description of data and variables 
The data used in this paper comes from hurricanes, power 

systems, and geography. The hurricane data refers to the 
maximum 3-sec wind gust. The power system data includes 
the number of customers, poles, pole-mounted transformers, 
box-type transformers, guy wires, and the length of overhead 
lines. The geography data includes the longitude, the latitude, 
the altitude, the slope aspect, the slope position, the 
underlying surface type, and the surface roughness. In [13], 
all explanatory variables were categorized into the static and 
dynamic types based on whether they are time-dependent. 
Similarly, the data used in this study is divided into 8 static 
and 6 dynamic explanatory variables. In this way, only 
dynamic explanatory variables need to be updated in actual 
applications. 

The target area is divided into the grid cells with the size 
of 1 km2 for data collection. Variables are defined based on 
the collected data. The response variable ( 𝑌𝑌 ) is the 
dichotomous variable, which is 1 if outages happen in the grid 
cell and otherwise is 0. The proposed method in this paper is 
to predict the response variable of the grid cell. The static 
explanatory variables includes the longitude (𝑋𝑋_𝐿𝐿𝐿𝐿𝐿𝐿 ), the 
latitude (𝑋𝑋_𝐿𝐿𝐿𝐿𝐿𝐿), the altitude (𝑋𝑋_𝐴𝐴𝐴𝐴𝐿𝐿), the slope aspect (𝑋𝑋_𝑆𝑆𝐴𝐴), 
the slope (𝑋𝑋_𝑆𝑆𝐴𝐴𝐿𝐿), the underlying surface type (𝑋𝑋_𝑈𝑈𝑆𝑆𝑈𝑈), and the 
surface roughness (𝑋𝑋_𝑆𝑆𝑆𝑆). The dynamic explanatory variables  
include the maximum 3-sec wind gust (𝑋𝑋_𝐺𝐺𝐺𝐺𝐺𝐺), the number of 
customers (𝑋𝑋_𝐶𝐶𝐺𝐺𝐺𝐺), poles (𝑋𝑋_𝑃𝑃𝐿𝐿𝐴𝐴), pole-mounted transformers 
(𝑋𝑋_𝑃𝑃𝑈𝑈), box-type transformers (𝑋𝑋_𝐵𝐵𝑈𝑈), guy wires (𝑋𝑋_𝐺𝐺𝐺𝐺), and 
the length of overhead lines (𝑋𝑋_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿). 

B. Data preprocessing 
When the gust data from monitoring stations is available, 

the interpolation is often used to generate high-resolution 
gust maps. However, the interpolation only considers the 
distance difference and ignores the impact of the altitude on 
wind speed that can be depicted by the power law. Hence, the 
generated wind gust is just the wind gust at the average 

altitude of the monitoring stations, rather than that at the 
actual altitude of the grid cells. Therefore, the collected 
maximum 3-sec wind gust in each grid cell is rectified by 
using the power law shown in (1). 

 𝑋𝑋𝑖𝑖,𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑉𝑉𝑖𝑖,𝐺𝐺𝐺𝐺𝐺𝐺 �
𝑍𝑍
𝑍𝑍𝑖𝑖
�
𝛼𝛼𝑖𝑖

 (1) 

where the symbol 𝑋𝑋𝑖𝑖,𝐺𝐺𝐺𝐺𝐺𝐺 is the rectified gust in the grid cell 𝑖𝑖, 
the symbol 𝑉𝑉𝑖𝑖,𝐺𝐺𝐺𝐺𝐺𝐺  is the original gust, the symbol 𝑍𝑍  is the 
averaged altitude of all the monitoring stations, the symbol 
𝑍𝑍𝑖𝑖 is the altitude, and the symbol 𝛼𝛼𝑖𝑖 is the surface roughness 
coefficient [17]. Based on the power law, the wind speed 
increases with the increase of the height. Thus, the maximum 
3-sec wind gust is rectified to the actual altitude of grid cells. 

For grid cells that do not have customers, there is no 
outage under any circumstances. These grid cells are less 
meaningful for the model training while increasing the 
computing cost. Therefore, the grid cells that have no 
customers are deleted from the dataset. For the nominal 
variable, this paper uses the one-hot encoding to convert it to 
0/1 bits, which enables to enlarge the variable space and 
speed up the modeling [19]. One-hot encoding is illustrated 
in Fig. 1. 

Variable X

Value 2

Value N

Value 1 100 ……000

010 ……000

001 ……000

000 ……001

 …… ……

Variables X_1, X_2, X_3, …, X_N-2, X_N-1, X_N

Value 3 One-hot

N values N bits
 

Fig. 1. One-hot encoding 

As shown in Fig. 1, before encoding, the nominal 
variable 𝑋𝑋 has N types of values, representing N categories. 
After the one-hot encoding, it is encoded as a bit combination 
of one ‘1’ and N-1 ‘0’. Thus, the variable 𝑋𝑋 is extended to N 
variables according to its N categories. In this study, the 
underlying surface type ( 𝑋𝑋_𝑈𝑈𝑆𝑆𝑈𝑈 ) is classified into 10 
categories, which is extended to 10 explanatory variables 
(from 𝑋𝑋_𝑈𝑈1 to  𝑋𝑋_𝑈𝑈10) by using the one-hot encoding.  

The variables with a large absolute value are prone to be 
recognized important in modeling. They can lead to large 
prediction errors. Therefore, the variables need to be scaled 
to eliminate such effect. Since the value ranges of variables 
are different and change with data updates, it is complicated 
to define the base line values. Thus, this paper uses the min-
max normalization as shown in (2) to convert the variable in 
the range from 0 to 1 [17]. 

 𝑋𝑋∗ = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚

 (2) 

where the symbol 𝑋𝑋 is the original variable and the symbol 
𝑋𝑋∗ is the scaled variable ranging in [0,1]. the symbols 𝑋𝑋𝑚𝑚𝐿𝐿𝑚𝑚 
and 𝑋𝑋𝑚𝑚𝑖𝑖𝐿𝐿 are the maximum and minimum values of 𝑋𝑋. After 
data preprocessing, the summary of variables used in this 
paper are shown in TABLE I. 
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TABLE I.  SUMMARY OF THE VARIABLES USED IN THIS PAPER 

Explanatory 
Variable 

Static Dynamic 
Notation Meaning Notation Meaning 

1 X_Lon longitude X_Gus 
the maximum 3-

sec wind gust 

2 X_ Lat latitude X_Cus 
number of 
customers 

3 X_ Alt altitude X_Pol number of poles 

4 X_SA slope 
aspect X_PT 

number of pole-
mounted 

transformers 

5 X_Slo slope X_BT 
number of box-

type transformers 

6 X_US1 – 
X_US10 

underlying 
surface 

type 
X_GW 

numbers of poles 
without guy wires. 

7 X_SR surface 
roughness X_LOOL length of overhead 

lines 

C. Variable selection 
Not every variable is indispensable for modeling, since 

too many variables with low importance will increase the 
complexity and computational cost of the model. In addition, 
some variables introduce noises to reduce the prediction effect 
of the model. Therefore, the variables need to be selected and 
the method is introduced as follows. First, the Pearson 
correlation analysis is performed between the explanatory 
variables to help check and understand variables. This 
analysis is helpful to discover potential redundant variables. 
For example, if the linear correlation between two variables is 
strong, it indicates that one of them is redundant. Second, the 
importance of explanatory variables is identified and ranked 
based on the RF classifier. In this way, variables with high 
importance are retained, while variables with low importance 
are deleted. 

III. MODELING 

A. Models and metrics 
This study uses three machine learning algorithms as the 

basis to build a stacked model, including the RF, the  GBDT , 
and the AdaBoost. The RF is an ensemble learning method 
constructed by the decision tree and bagging [20]. It uses the 
subsets of data and features to train each decision tree, and the 
trees are ensemble to build the forest. It performs well in 
outage prediction under hurricanes and can ensure a high 
accuracy with small generalization errors [10-13]. The GBDT 
builds the tree by the boosting method [21]. It uses the 
negative gradient of the loss function to train the boosting tree, 
thus have a high accuracy and strong robustness. The 
AdaBoost trains a series of weak classifiers by updating the 
weight of the training data, and ensembles the weak classifiers 
to obtain a strong classifier [22-23]. It is the first boosting 
algorithm and fast in training. It can be less susceptible to 
overfitting. 

It is noted that their respective advantages are represented 
in the stacked model. For example, the RF and GBDT 
algorithms have a high prediction accuracy, and the AdaBoost 
algorithm can speed up the computational speed. The 
configuration of the stacking structure is introduced in the 
next section. The performance of outage prediction is 
measured by three metrics, including the precision, the recall, 
and the 𝐹𝐹𝛽𝛽 score [24]. They are given by 

 𝑃𝑃𝑟𝑟 = 𝑈𝑈𝑃𝑃
𝑈𝑈𝑃𝑃+𝐹𝐹𝑃𝑃

 (3) 

 𝑅𝑅𝑒𝑒 = 𝑈𝑈𝑃𝑃
𝑈𝑈𝑃𝑃+𝐹𝐹𝑁𝑁

 (4) 

 𝐹𝐹𝛽𝛽 = (1 + 𝛽𝛽2) ∙ 𝑃𝑃𝑟𝑟∙𝑆𝑆𝑒𝑒
𝛽𝛽2∙𝑃𝑃𝑟𝑟+𝑆𝑆𝑒𝑒

 (5) 

where the symbol 𝑃𝑃𝑟𝑟 is the precision metric that represents the 
proportion of the grid cells, which actually have outages 
among the grid cells that are predicted to have outages, the 
symbol 𝑅𝑅𝑒𝑒 is the recall metric that represents the prediction to 
find all grid cells that actually have outages. The symbol 𝑇𝑇𝑃𝑃 is 
the number of grid cells identified as outage in both actual and 
predicting conditions. The symbol 𝐹𝐹𝑃𝑃 is the number of grid 
cells identified as outage in prediction but as not in actual 
condition. The symbol 𝐹𝐹𝑁𝑁  is the number of grid cells 
identified as no outage in prediction but as outage in actual 
condition. The symbol 𝐹𝐹𝛽𝛽 score is a comprehensive measure 
of precision and recall, and the symbol 𝛽𝛽 is a positive real 
factor which means how much times recall is as important as 
precision.  

B. Stacking 
As shown in Fig.2, the stacked model is divided into two 

layers. The first layer is to generate new variables based on 
the original dataset and add them to form a new dataset. To 
avoid overfitting, this paper uses the 2-fold cross-validation 
when producing the new variables. Specifically, for each 
model in the first layer, one fold is used to train the model and 
the other is used to produce new variables. The second layer 
is to use the new dataset generated by the first layer to build a 
prediction model.  

New Variable 1Predict

Train Train

Predict

Predict

Train

Predict

Train

Train

Predict

Train

Predict

New Variable 2

New Variable 3

Dataset

RF1

GBDT

AdaBoost

New Dataset RF2

Optimize Re

Optimize Pr

Optimize Pr

Optimize Re

Stacking 
Model

Original
Dataset

 
Fig. 2. Stacking construction 

At each layer, the single models are assigned to optimize 
different metrics based on the aforementioned advantages. In 
the first layer, the RF and GBDT are optimized to improve the 
precision due to their high accuracy, and the AdaBoost is 
optimized to improve the recall due to its high speed [11-14, 
17]. In the second layer, the RF is optimized to improve the 
recall as the power system operator cares more about the 
comprehensiveness of forecast results. Therefore, all the 
outage grid cells are included in the prediction results.  

The proposed stacked model integrates different learning 
mechanisms and advantages of single algorithms. It has the 
same input and output with the single model, but achieves 
better prediction performance by assigning metrics and 
generating new variables.  

C. Cross-validation testing 
When generating new variables as shown in Fig. 2, the 

model is trained on one fold first. On this fold, the target 
metric is optimized in the hyper parameter space by randomly 
selecting 80% data of the fold to train the model and the 20% 
to test. The optimization is repeated for 20 times until the 
hyper-parameters are found. Similarly, when measuring the 
performance of the stacked and single models, this paper also 

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 03,2023 at 16:06:53 UTC from IEEE Xplore.  Restrictions apply. 



utilizes the cross-validation testing. This paper first optimizes 
the hyper-parameters on a random sample with 80% of the 
whole dataset, and then predicts the power outages and 
measures the metrics for the rest of 20% dataset. The test is 
conducted for 20 times and the average of each metric is used 
to evaluate the performance of the model. 

IV. CASE STUDY 
A case study is conducted to verify the effectiveness and 

feasibility of the proposed method. The applied data is the 
realistic outage information of a coastal county under 2 
historical hurricanes with identical geographic coordinates. In 
particular, since there is no high-resolution gust data 
available, the gust data is from the interpolation based on the 
gust of monitoring stations. As introduced before, there are 8 
static and 6 dynamic explanatory variables. The effectiveness 
of the gust rectification algorithm and stacked model is 
verified, and the results are contrasted and discussed in this 
section.  

A. Data preprocessing 
The wind gust is rectified by using (1) as the gust map is 

generated using the interpolation. To verify the effectiveness 
of the gust rectification, this paper compares the performance 
based on the stacked model before and after the rectification. 
Due to the nominal characteristic, the underlying surface type 
is converted to 0/1 bits based on one-hot encoding as shown 
in Fig. 1, thus 23 explanatory variables are prepared. Finally, 
the variables are scaled by the min-max normalization as 
introduced in (2) to eliminate the negative impact of variables 
with large absolute values. 

B. Variable selection 
To check the rationality and understand the dataset, the 

Pearson correlation between variables are shown in Fig. 3. 
The stronger positive correlation between two variables is 
represented with the redder color. On the contrary, the 
stronger negative correlation between two variables is 
represented with the bluer color. 

 
Fig. 3. Pearson analysis for variables 

In Fig. 3, some correlations are in alliance with practical 
experience. For example, the maximum 3-sec wind gust is 
stronger with the altitude increases, and is weaker with the 
surface roughness increases. In addition, the grid cells with 
more customers need more poles, transformers, and the length 
of overhead lines. Although this indicates that the dataset is 
reasonable, the strong positive correlations implies that some 
variables are redundant and need to be deleted to simplify the 
model. It is noted that the correlations between the one-hot 

encoded underlying surface types are 0, since they are 
orthogonal bases within one group in this variable space. The 
variable importance is identified and ranked using the RF 
classifier. And Pearson correlation coefficients between 
important variables and 𝑌𝑌 are also calculated [25]. The results 
are shown in Fig. 4 and TABLE II.  

 
Fig. 4. Importance ranking of variables 

TABLE II.  IMPORTANCE OF THE VARIABLE 

Variable I P Variable I P 

X_Lon 0.141 0.064 X_Gus 0.200 0.005 

X_Lat 0.089 0.151 X_Cus 0.056 0.003 

X_Alt 0.081 -0.024 X_Pol 0.057 0.067 

X_SA 0.064 -0.048 X_PT 0.033 0.114 

X_Slo 0.070 0.008 X_BT 0.006 0.084 

X_US1 0.007 0.062 X_GW 0.003 0.058 

X_US2- X_US9 <0.005 / X_SR 0.068 -0.045 
X_US10 0.012 -0.149 X_LOOL 0.090 0.065 

As shown in Fig. 4, the importance of variables is 
descending ranked. It can be seen that the maximum 3-sec 
wind gust (𝑋𝑋_𝐺𝐺𝐺𝐺𝐺𝐺 ) is the dominant variable, and then the 
longitude for the hurricane track is from east to west in this 
case and the gust changes with the roughness. The importance  
(𝐼𝐼) of each variable and the Pearson correlation coefficient (𝑃𝑃) 
of important variable are provided in TABLE II. This paper 
selects variables with the importance more than 0.006 to feed 
into the model. Therefore, 13 variables including 𝑋𝑋_𝐺𝐺𝐺𝐺𝐺𝐺 , 
𝑋𝑋_𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑋𝑋_𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑋𝑋_𝐴𝐴𝐴𝐴𝐿𝐿 , 𝑋𝑋_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑋𝑋_𝑆𝑆𝐴𝐴𝐿𝐿 , 𝑋𝑋_𝑆𝑆𝑆𝑆 , 𝑋𝑋_𝑆𝑆𝐴𝐴 , 𝑋𝑋_𝐶𝐶𝐺𝐺𝐺𝐺 , 𝑋𝑋_𝑃𝑃𝐿𝐿𝐴𝐴 , 
𝑋𝑋_𝑃𝑃𝑈𝑈, 𝑋𝑋_𝑈𝑈𝑆𝑆1, and 𝑋𝑋_𝑈𝑈𝑆𝑆10 are utilized to train the stacked model. 
Pearson correlation coefficients provide the positive or 
negative correlations between variables and outage areas. 

C. Modeling and predicting 
The stacked model is developed based on Fig. 2 and the 

performance is measured by metrics introduced in section III. 
To emphasize the recall metric, this paper selects 𝛽𝛽 = 3, then 
the results are shown in TABLE III.  

TABLE III.  COMPARISON OF MODEL PREDICTION RESULTS 

Model RF GBDT AdaBoost Stacked 
model 

Percent 
improved 

Pr 0.753 0.795 0.570 0.889 11.82% 

Re 0.747 0.829 0.886 0.972 9.71% 

F3 0.748 0.826 0.840 0.963 14.64% 

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 03,2023 at 16:06:53 UTC from IEEE Xplore.  Restrictions apply. 



It can be seen that the presented model improves the 𝑃𝑃𝑟𝑟 by 
11.82%, the 𝑅𝑅𝑒𝑒 by 9.71%, and the 𝐹𝐹3 by 14.64%, compared 
with the best metrics of single models. Additionally, the 
performance before and after the gust rectification are 
compared based on the stacked model, which is shown in 
TABLE IV. 

TABLE IV.  EFFECTIVENESS OF GUST RECTIFICATION 

Model No-rectification Rectification Promoted 
percentage 

Pr 0.884 0.889 0.6% 

Re 0.950 0.972 2.3% 

F3 0.943 0.963 2.12% 
It shows that the gust rectification algorithm improves the 

𝑃𝑃𝑟𝑟 by 0.6%, the 𝑅𝑅𝑒𝑒 by 2.3%, and the 𝐹𝐹3 by 2.12% compared 
with the no-rectification model. This proves that in practical 
applications, even if there is no high-resolution gust data, the 
interpolation and gust rectification can be used to improve the 
prediction performance of the model. In TABLE III and IV, 
the effectiveness of the proposed stacked model and gust 
rectification is validated.  

V. CONCLUSION 
The Gust rectification and stacking based method are 

proposed to improve the outage prediction accuracy. Though 
correcting gust data by using the power law and configuring 
stacking structure properly, the precision, the recall and the F3 
score of outage prediction are improved compared to single 
models. In the stacking process, this paper properly assigns 
metrics for single models to optimize. The results of the case 
study verify that the gust rectification and presented stacked 
model can effectively promote the outage prediction 
performance. The proposed methodology is able to reduce the 
outage loss and enhance power system resilience. 
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