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Abstract--Vegetation encroaching on overhead power lines can 

cause short circuit faults and pose a major threat to the security 

and stability of power grids. Therefore, establishing an effective 

visual detection algorithm to oversee potential circuit failures of 

the power lines is critical to the ongoing inspection of vegetation 

encroachment. This paper establishes a deep learning-based 

detection framework that utilizes the images obtained from vision 

sensors mounted on power transmission towers. The proposed 

detection framework includes three cascaded modules: (1) 

detection of vegetation regions based on the Faster Region 

Convolution Neural Network (Faster R-CNN), (2) detection of 

power lines based on the Hough transform, and (3) detection of 

vegetation encroachment based on an advanced stereovision (SV) 

algorithm. In particular, the proposed SV algorithm converts the 

detected two-dimensional (2D) image data of the vegetation and 

power lines to three-dimensional (3D) height and location results 

in order to obtain precise geographical locations. Case studies 

using field captured images provided by a Transmission System 

Operator (TSO) demonstrate the effectiveness of the proposed 

framework in detecting vegetation failures, thus improving 

overall reliability and reducing economic loss. 

  
Index Terms-- Deep learning, digital image, Hough Transform, 

power lines, stereovision, short circuit fault, vegetation 

management. 

I.  INTRODUCTION 

COLOGICAL mismanagement may neglect overgrown 

forests, which are increasingly primed for wildfires. 

Vegetation encroachment in power line corridors poses severe 

threats to the bare conductors of overhead power lines due to 

vegetation growth and wind conditions [1]. This can result in 

electrical short circuits in the vicinity where trees contact with 

transmission lines. As transmission lines usually transfer 

hundreds of megawatts of power from one tower to another 

tower that can be hundreds of miles away, the reliability of 

power transfer greatly relies on the secure and stable operation 

of transmission lines. With the rapidly increasing consumption 
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of electric power, the operation environment of overhead 

power lines has become more complex, especially in 

undeveloped natural areas. The incidents caused by the 

external conflict between vegetation and overhead lines have 

become a critical issue of forest management. 

Ineffective vegetation management was identified as a 

major cause of the Northeast Blackout of 2003. This blackout 

affected an estimated 55 million people in the U.S. and 

Canada. It also has been a causal factor for 290 automatic 

North American outages from 2009 to 2016 [2]. To reduce the 

risk of vegetation-related outages, the North American 

Electric Reliability Corporation (NERC) developed the 

vegetation management reliability standard (NERC FAC-003) 

that defines clearance distances for specific voltage levels of 

transmission lines [3]. Therefore, it is significant for power 

utilities to develop effective vegetation management schemes 

to comply with the standard requirements and avoid potential 

circuit failures.  

The common manual power line inspection with foot 

patrols and helicopters can be exhaustive and time-consuming 

[4]. It is also hard to determine the violation of the vegetation 

clearance distance solely relying on human eyesight from a 

long distance, thus leading to a high false rate and ignorance 

on the judgment of vegetation encroachment determination [5-

6]. As a result, those traditional inspections cannot meet the 

requirements of the reliable operation of power lines.  

The unmanned aerial vehicle (UAV) with light detection 

and ranging (LiDAR) techniques or digital cameras has been 

widely applied to improve the efficiency and accuracy of the 

vegetation encroachment detection [7]. However, the 

inspection using the UAV with LiDAR requires costly 

components, e.g., LiDAR sensors and the global positioning 

system (GPS), and needs to deal with a large amount of 

computation for data processing [8]. UAVs with cameras 

apply the stereovision (SV) technology that can generate the 

3D information from 2D images based on the parallax of 

binocular images [9-10]. However, the detection results using 

these aerial imaging methods are usually inaccurate as they 

use dynamic camera coordinates [11]. Another alternative is to 

apply the satellite imaging technology with the SV to produce 

a 3D depth map to measure the vegetation encroachment [12]. 

However, these aerial imaging-based methods using UAVs or 

satellites can only distinguish trees based on the color analysis 

of tree crowns, which does not work when the color of trees 

changes or is close to their background color [13]. The 
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satellite imaging-based methods also have lower accuracy due 

to their low image resolutions [7]. As a result, these vegetation 

encroachment detection methods cannot provide continuous 

monitoring with high accuracy and a low cost.  

Strategic defense for power infrastructure has been 

envisioned with grid vulnerability issues and adaptive control 

mechanisms [14]. Wireless sensor network (WSN) and vision 

sensors are extensively implemented to monitor power system 

environments and have been deployed on power towers as part 

of the transmission monitoring framework [15-16]. The 

deployment of these vision sensors enables continuous 

monitoring and development of intelligent inspection of 

vegetation encroachment for power lines [17]. In a large scene 

of power line corridors, the accuracy of the traditional SV 

algorithm decreases dramatically [18-19]. To adapt and 

improve the accuracy of SV in a large-scale scene, this paper 

presents an advanced SV algorithm that incorporates two new 

optimization subroutines into the traditional SV algorithm.  

Recognizing objects in images can be implemented based 

on the Hough transform algorithm, which can detect power 

lines accurately and robustly [20]. However, the tree detection 

in an image is much more complicated from the ground view 

due to the complex background and ongoing tree morphology. 

Deep learning techniques have greatly improved the 

performance of image recognition and provide opportunities to 

overcome this challenge [21-22]. This paper utilizes a deep 

learning algorithm, i.e., faster regional-convolution neural 

network (Faster R-CNN) to detect vegetation regions. The 

Faster R-CNN has been developed to detect the object 

accurately by providing high-quality region proposals [23]. 

Combined with the proposed SV module, the location and 

height information of trees and power lines can be determined 

in 3D. 

The major contribution of this paper is the proposal of the 

intelligent detection framework of vegetation encroachment, 

which includes (1) detection of vegetation regions, (2) 

detection of power lines, and (3) novel stereo visionary 

improvement. This framework integrates the Faster R-CNN 

and Hough transform into the stereovision algorithm 

innovatively for the first time to achieve cost-effective 

monitoring of the vegetation encroachment of power lines. In 

addition, two optimization subroutines are developed to 

innovate the traditional stereovision algorithm and improve its 

accuracy and feasibility in a large-scale scene of power line 

corridors. The proposed framework can be easily deployed in 

the monitoring system of power systems by TSOs for the 

vegetation encroachment inspection. It is also able to provide 

a cost-effective method for TSOs to comply with the NERC 

FAC-003. The traditional vegetation inspection methods need 

a specific budget for each inspection that is required at least 

once per year [3]. However, using the proposed framework, 

TSOs only need to invest once to set up the WSN and cameras 

on power towers surrounded by dense vegetation. The 

proposed framework can also provide more accurate detection 

results by providing the actual 3D visualization of a scene 

with high-resolution images [7]. The effectiveness of the 

proposed framework is verified with realistic monitoring 

images from a TSO. 

This paper is organized as follows. Section II outlines the 

proposed framework. Section III introduces the power line 

detection module and vegetation detection module. Section IV 

introduces the principles of the proposed advanced SV module. 

Section V shows the results of vegetation detection and 

discusses the effectiveness of the proposed framework. 

Section VI concludes this paper. 

II.  OUTLINE OF PROPOSED FRAMEWORK 

The proposed online intelligent detection framework is 

illustrated in Fig. 1. The existing power line image monitoring 

systems mainly utilize wired equipment such as optical fiber 

or wireless 4G to send images to the monitoring center. 

Wireless communication is widely applied in monitoring 

systems due to its low cost. However, the limitation of the 

wireless channel bandwidth will affect the quality of images. 

This cannot meet the requirements of manual visual inspection 

or automatic recognition [24]. To address this issue, this paper 

proposes a local image processor that can be embedded with 

the detection framework. When there is an alarm or a need for 

real-time viewing, the processor can send images to the 

monitoring center. This can effectively relieve the burden of 

wireless communication and ensure image quality.  

As shown in Fig. 1, with the binocular vision sensors 

mounted on a power tower, their image data is collected and 

processed in the local image processor, where the intelligent 

vegetation encroachment framework is embedded to detect 

vegetation and power lines, and 

identify their 3D height and location 

information. When the height of a 

tree violates the clearance distances 

of power lines, the local processor 

sends an alarm to the monitoring 

center to assign a maintenance crew 

to trim the tree. The image data is 

processed by the deep learning-

based detection module and the 

Hough transform-based module to 

detect trees and power lines, 

respectively. The detection results 

are then processed by the proposed 

advanced SV model. As a result, 2D 
 

Fig. 1. Detection of vegetation encroachment in power line corridor 
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information of the trees and power lines in images are 

converted to the 3D information and their heights are 

determined.  

Fig. 2 shows the flowchart of the intelligent detection 

framework consisting of three parts: 1) detection of trees and 

power lines, 2) 3D reconstruction using stereovision, and 3) 

vegetation encroachment determination.  

 

Fig. 2.  Flowchart of proposed vegetation encroachment detection framework 

Step 1: Detection of power lines and trees. In order to 

determine the 3D information of trees and power lines, their 

shapes and positions in 2D images need to be identified. The 

power lines are detected with the developed power line 

detection module including a straight-line detection tool, i.e., 

the Hough transform algorithm. The trees are difficult to 

detect due to their complex and various morphologies, e.g., 

colors and shapes. Therefore, the Faster R-CNN is first used in 

this paper to detect trees for vegetation detection, as in Fig. 2.  

Step 2: Stereovision. After trees and power lines are 

detected in 2D images, their 3D information can be calculated 

by applying the SV algorithm. The traditional SV algorithm 

cannot be applied to the power line monitoring directly due to 

its bad performance in large-scale scenes with complex 

backgrounds [19]. Therefore, an advanced SV algorithm is 

proposed to adapt the traditional SV algorithm by 

incorporating new optimization subroutines.  

1) Optimized calibration. Camera calibration is an offline 

process that establishes an SV model to represent the 

relationship of 2D images and 3D space by calculating the 

intrinsic and extrinsic parameters of binocular cameras. The 

parameters are calculated based on Zhang’s calibration 

method with the known geometry information of a plane and 

its projection image coordinates on binocular images [18]. To 

improve the accuracy of the calibration, an optimization 

subroutine is proposed to perform the calibration iteratively.  

2) Feature points extraction and match. The 3D 

information of trees and power lines rely on the 3D 

coordinates of their feature points, which can be calculated 

from their 2D image coordinates in the binocular images using 

the established SV model. Therefore, the feature points of 

trees and power lines in binocular images need to be extracted 

and matched to calculate their 3D coordinates.  

3) 3D reconstruction. The determination of 3D coordinates 

of feature points is defined as 3D reconstruction. To optimize 

this process, an optimization algorithm is developed to 

transform the reconstructed world coordinate system (WCS) to 

a ground-based coordinate system (GCS). This allows the 

direct height measurement of power lines and trees in a 3D 

coordinate system based on the real-world ground. 

Step 3: Vegetation encroachment determination. Based on 

the heights and locations of power lines and trees, their height 

gap (i.e., vegetation encroachment) can be determined. If the 

vegetation encroachment violates the clearance distance, an 

alarm signal will be sent to the remote monitoring center to 

trigger maintenance work for the mitigation.  

III.  DETECTION OF POWER LINES AND VEGETATION 

During online monitoring, binocular images are obtained 

and applied to the detection of power lines and trees. 

A.  Detection of the Line Object 

The power lines are detected using Hough transform, which 

transforms the coordinates of pixels in images to the curves in 

a Hough space, as in Fig. 3 [25]. 

 
(a) Image                      (b) Hough space 

Fig. 3. Straight-line detection in images using Hough Transform 

The principle of line detection is introduced as follows. In 

the Hough space, a straight line is represented as, 

ρ = x × cosθ +y × sinθ                         (1)  

where coordinates (x, y) are the image coordinates of a pixel. 

The symbol θ represents the angle of the line inclination to the 

x-axis. The symbol ρ represents the perpendicular distance 

from the origin to the line. As shown in Fig. 3, each pixel (e.g., 

A, B, and C) in an image has a corresponding value of ρ with 

varied θ, and can be converted to a curve in the Hough space. 

Therefore, the straight line across points A, B, and C in the 

image is determined by the intersection of curves A, B, and C. 

B.  Deep Learning-based Vegetation Detection  

To detect vegetation in images, a neural network based on 

the Faster R-CNN is designed and trained to generate the 

bounding boxes (represented as bboxes in the following 

content) of vegetation regions. The Faster R-CNN includes the 

region proposal network (RPN) and Fast R-CNN. The RPN 

predicts the regions by determining the probability of the 

region containing a target object and generates region 

proposals, which are then applied to the Fast R-CNN block for 

object recognition and detection. The RPN and Fast R-CNN 

are merged into a single network by sharing convolutional 

features in the convolution layers, as shown in Fig. 4.  

In the process, binocular images are fed to the shared 

convolution layers to exact feature maps, which are shared 

with the subsequent RPN and fully connected (FC) layers. In 

the RPN, a softmax layer is used to identify region proposals 

containing the target object, and the bbox regression layer is 
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used to modify regions to obtain accurate proposals. The 

region of interest (RoI) pooling layer collects the input feature 

maps and proposals, extracts the proposed feature maps, and 

sends them to the FC layers in the Fast R-CNN. As a result, 

the categories and positions of bboxes are obtained from the 

softmax and bbox regression layers, respectively.  

 
Fig. 4. Structure of Faster R-CNN  

This paper develops a CNN consisting of three parts: 1) an 

image input layer to restrict the type and size of the input 

images; 2) 3 convolutional layers, each has 32 5×5 filters and 

is followed by a rectified linear unit (ReLU) layer and a 

pooling layer, are used in the middle part to extract feature 

maps; 3) FC layers with 64 neurons and a softmax loss layer 

to identify the desired region proposals containing the target 

objects. The CNN is pre-trained with the CIFAR-10 database 

including 50,000 images with a small size (i.e., 32×32 pixels) 

[26]. This can reduce the training time on a limited graphic 

processing unit (GPU). 

IV.  ADVANCED STEREOVISION MODULE 

After trees and power lines are detected in the 2D images, 

their 3D information can be determined by applying the 

advanced SV module proposed in this section.  

A.  Traditional SV Model 

The traditional SV is introduced using the ideal parallel SV 

model to show the necessity of the proposed algorithms. Fig. 5 

shows the ideal model with a projection of an object (P) from 

3D space to 2D images (p1 and p2) [18]. The optical axes of 

binocular cameras are assumed parallel, and intrinsic 

parameters of the binocular cameras are assumed identical. 

Based on the optical geometric law, 3D coordinates of the 

point P in WCS can be represented by the intrinsic and 

extrinsic parameters, along with projected image coordinates 

of points p1 and p2, as in (2),  

( ) ( )

( ) ( )

1 0 1 0

0 2 1 0 1 2( )

T T Tf
X u u Y v v Z

T d T d T d

d u u u u u u



 

= − = − =
− − −

= − − − = −  

, ,         
(2)

 

where the symbol d represents the parallax, (X, Y, Z) are the 

3D coordinates of P, (u1, v1) and (u2, v2) are the 2D image 

pixel coordinates of the projection (p1 and p2) in images 1 and 

2, respectively. The intrinsic parameters include 1) image 

pixel coordinates of image central points represented by the 

coordinates (u0, v0); 2) the pixel physical length represented by 

symbol α; 3) the focal length represented by symbol f. The 

extrinsic SV parameters include the translation vector 

(represented by symbol T), and the rotation matrix between 

the binocular images (which is a unit matrix in this case).  

Based on this model, the parameters can be calculated via 

calibration with the known image coordinates and the 3D 

world coordinates of the calibration points. The reconstruction 

is the reverse process of the projection, which is to determine 

the 3D coordinates from its matched coordinates in binocular 

images and parameters determined via calibration.  

 
Fig. 5. Ideal SV projection model 

B.  Field Set-up for Camera Calibration 

The camera calibration is to determine binocular camera 

parameters with the known geometry data of calibration 

objects in the field images. A calibration object is usually a 

checkerboard-like plane, which, however, is not practical to be 

used in a power line corridor due to the large area [18]. A pole 

ruler is adopted as a calibration object to expand the 

calibration area, as in Fig. 6.  

 

Fig. 6. Experiment set-up for binocular camera calibration 

The pole is 4 meters and placed on the field ground 

vertically tied with a white marker at each meter, which can be 

extracted as calibration points. The pole is placed transversely 

and longitudinally every 5 meters to form a matrix comprising 

6 calibration planes shown as green in Fig. 6. With the 2D 

image coordinates of extracted calibration points, the intrinsic 

and extrinsic parameters are calculated. It is noted that the 

WCS is based on the coordinate system of camera 1 in the 

traditional SV model, as defined in Fig. 5.  

The binocular sensors are Pan/Tilt/Zoom (PTZ) cameras, 

whose positioning can be controlled and recorded remotely. 

After calibration, the generated SV parameters and position 

information can be saved for applications in new sites.  

C.  Calibration optimization of advanced SV 

The assumption of identical intrinsic parameters of 

binocular cameras in the traditional SV model ensures high 

accuracy of the calibration [18]. Therefore, the traditional SV 

generally uses the same product for binocular cameras with a 

fixed-focal length. This assumption is, however, challenged by 
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zoomable surveillance cameras with changeable focal length 

settings of a low precision applied in power line corridors. 

The resulting focal length gap of binocular cameras can cause 

a significant error in the calibration.  

To eliminate this error, an optimization subroutine is 

proposed to regulate the focal length of camera 2 to be 

identical to the focal length of camera 1 by changing its 

image coordinates. As shown in the chart of the algorithm, 

Steps 1 and 2 initialize the focal lengths, the scale factor, and 

the regulating factor that is used to change the calibration 

coordinates of image 2. Step 3.2 shows the optimization 

process of the scale factor that minimizes the focal length gap 

of two cameras obtained via the calibration. Specifically, 

when the focal length of image 1 is larger (smaller) than that 

of image 2, the scale factor will increase (decrease) for next 

step process. The regulating factor is a constant value (set as 

2). It determines the increment of the scale factor when the 

current scale factor is the largest value in all the previous 

iterations. Otherwise, the increased or decreased scale factor 

adopts the middle value between the previous value and its 

adjacent value.  

D.  Feature Extraction and Match of Advanced SV 

To calculate 3D information of power lines and trees, their 

feature points in the images need to be extracted and matched 

to calculate the parallax. Due to their different characteristics, 

this process is achieved by two distinct methods.  

The feature points of trees are extracted using the scale 

invariant feature transform (SIFT) algorithm, which is a 

feature detection algorithm to detect local features (e.g., the 

texture and color) in images [27]. These points in binocular 

images can be matched in pairs if they have the same features. 

However, feature points on a power line are difficult to 

extract and match, as they all have the same texture and color. 

To address this issue, a new method based on the epipolar 

constraints is developed. Using the parameters of the 

proposed advanced SV model, the image distortion and angle 

differences of the binocular images can be eliminated through 

image rectification. It allows the corresponding feature points 

in the binocular images to be at the same horizontal level (i.e., 

an epipolar line), which is defined as epipolar constraints [18]. 

The corresponding points on the power lines can be 

determined with the intersection of the epipolar lines, as 

shown in Fig. 7. As a result, the feature points in image 1 

(points 1, 2, 3) and in image 2 (points 1’, 2’, 3’) are 

determined and matched by the intersection between the 

power lines and the epipolar lines.  

E.  WCS Transformation of Advanced SV 

With coordinates of the matched points, the 3D 

coordinates are reconstructed with the parameters of the 

advanced SV model. In the traditional SV algorithm, the 

reconstructed 3D coordinates of feature points are in a WCS, 

which is based on the coordinate system of the camera 1. The 

WCS is not practical for height measurement as it has no 

correlation with the real-world field ground. To resolve this 

issue, the WCS is regulated to a GCS based on an 

optimization problem, which aims to find the transformation 

matrix between the 3D reconstructed coordinates and 3D real-

world calibration coordinates from field measurements, as 

shown in Fig. 8.  

Since axes X, Y, Z of the WCS are determined by the 

arbitrary position and angle of the camera 1, the reconstructed 

calibration points aligned by the real-world ground are not 

related to the X-Z plane in the WCS. The transformation 

enables the ground in WCS to be on the X-Z plane of the GCS 

Calibration optimization algorithm 

Result: Optimal SV parameters with identical focal 

lengths 

Step 1: Obtain initial focal lengths of cameras 1 and 2 

represented by symbols fl,1 and fr,1 via the first iteration of 

calibration 

Step 2: Initialize scale factor k1← 1, k2 ← fl,1/ fr,1, iteration 

time i←2 and regulating factor β ← 2 

Step 3: Find the optimal value of scale factor minimizing 

the difference of focal lengths: 

While  ( |fl,i – fr,i| > 1) do  

 Step 3.1: Update the calibration with coordinates of 

the calibration points in image 2 multiplying ki; 

 Step 3.2:{K1, …, Kn}← ascending order of values of 

{k1, …, ki} 

 Step 3.2: Do following 

if ( fl,i  ≥ fr,i ) then 

if  (ki = kn ) then 

ki+1 ←β(kn - 1)+1 

else  

ki+1 ← (kn’ + kn’+1)/2 

end 

else 

ki+1← (kn’ + kn’-1)/2 

end  

i ← i+1 

end 

 
Fig. 7. The power line detection with epipolar constraints 

 
Fig. 8. Transformation from WCS to GCS for constructed 3D coordinates 
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so that heights can be determined accurately by reconstructed 

coordinates. The transformation can be represented by (3),  
T T

1 2 31 1r r r

nj nj nj nj nj njx y z x y z R R R   =          (3) 

where the coordinates [xnj ynj znj 1]T are the homogeneous 

coordinates of the jth top point of the nth pole, the coordinates 

[xr
nj yr

nj zr
nj 1]T are homogeneous coordinates after 

transformation. Symbols R1, R2, R3 are transformation 

matrixes composed of the angles in X/Y/Z direction. The goal 

of this algorithm is to find the transformation matrixes that 

minimize the difference between reconstructed coordinates 

and real-world coordinates. The objective function is the 

average standard deviation (ASD) of 4 points on the nth pole 

represented by symbol Hn, as presented in (4). 
4

' 2 ' 2 ' 2

1

1
( - ) ( - ) ( - )

2

r r r

n nj nj nj nj nj nj

j

H x x y y z z
=

= + +             (4) 

where (x'nj y'nj z'nj) are corresponding coordinates in real-world 

coordinates based on GCS. To find the global optimal solution, 

the optimization problem is described as a Chebyshev 

approximation problem, which is to find the minimum value 

of the maximum element in a set [28]. The objective function 

is shown in (5), the decision variables are the angles in the 

transformation matrix, 

 ( )1minimize   = max{ , , }    1, ,25m nH H H n =  (5) 

The optimal solution of the transformation matrix can be 

determined using the quasi-Newton method [28]. Applying the 

transformation matrix, the 3D reconstruction of the feature 

points of power lines and trees can be put into a GCS, which 

can directly provide the height information.  

V.  CASE STUDIES AND DISCUSSION 

The optimization of the calibration and the transformation 

of WCS are verified to prove the effectiveness of the advanced 

SV module. Case studies are carried out to demonstrate the 

effectiveness of the proposed framework based on the realistic 

test images from a TSO. The 3D height and location 

information of trees and power lines in the realistic testing 

images are reported in this section. 

A.  Optimization of Calibration and WCS Transformation 

In the optimization of the calibration, the calculated focal 

lengths in the results of calibrations are shown in Fig. 9 (a). It 

shows that the focal length fr of camera 2 gradually converges 

to the focal length fl of camera 1 after 9 iterations. 

  
                (a)                                                       (b) 

Fig. 9. Results of optimization subroutines: (a) focal lengths during calibration 

optimization, and (b) reconstructed points with optimal calibration in GCS 

After the transformation, the reconstructed coordinate 

system WCS is transformed into a GCS. The comparison of 

the reconstructed coordinates with the real-world coordinates 

of calibration points is shown in Fig. 9 (b). Comparing with 

Fig. 8, the reconstruction points floating on the WCS are now 

on the X-Z plane (ground) and are very close to real-world 

coordinates in the GCS, which shows the effectiveness of the 

transformation. In addition, the reconstructed points in Fig. 9 

(b) use the optimal calibration parameters. Using the optimal 

calibration parameters, the maximum ASD (Hm) between the 

reconstructed and real-world coordinates of the calibration 

points on poles in equation (5) is reduced from 3.04 m to 

0.27m, which has a reduction of 91.1%. This indicates that the 

difference of 3D reconstruction coordinates and the real-world 

coordinates of calibration points is further reduced, which 

shows that the accuracy of the reconstruction is improved. The 

reduced ASD also indicates that the proposed framework is 

applicable for 3D reconstruction of objects that are within a 

range from the power tower to 95 m with high accuracy. 

B.  Vegetation Encroachment Detection 

The proposed framework is tested by two cases of 

transmission line sites with voltage levels of 500 kV and 220 

kV. Their detection results of power lines and vegetation are 

shown in Fig. 10 and Fig. 11. In both cases, the binocular 

cameras are pre-calibrated and mounted on a tower with the 

height of 13 m from the ground. They are 2 m away from each 

other. The vegetation in the images is about 30 m away from 

the tower. As shown in Fig. 10 (a) and Fig. 11 (a), four power 

lines are successfully detected in the binocular images in each 

case. Fig. 10 (b) shows the epipolar constraints for the height 

measurement of power lines. An epipolar line is set to 

generate the corresponding points a (a’), b (b’), c (c’), and d 

(d’). Using the same method, the corresponding points of 

power lines in case 2 are also determined. The calculated 3D 

coordinates of these points are shown in TABLE I. The Y 

coordinate gives the heights of the points on the power lines. 

TABLE I 

Measurements of Power Lines 

 Case 1 Case 2 

Points 
3D coordinates (m) 3D coordinates (m) 

X Y Z X Y Z 

a -2.36 16.92 28.93 1.88 15.13 34.20 

b -1.43 17.57 32.11 4.36 15,69 35.02 

c -1.59 18.14 36.74 9.54 15.52 34.23 

d 2.55 17.74 32.93 13.51 15.55 34.37 

 

A Faster R-CNN detector is developed via training to 

detect vegetation for test cases. A neural network is trained 

using the datasets consisting of 70 images of trees with 

different shapes in flourishing and withering conditions. 

Afterwards, the neural network is tested via 20 tree images. 

The testing results show the trees of 95% in 20 images are 

successfully detected with bboxes. Applying the detector, one 

tree is detected in case 1, and three trees are detected in case 2 

with bboxes, as shown in Fig. 10 (c) and Fig. 11 (b). The SIFT 

algorithm extracts and matches all the feature points of the 

binocular images for 3D reconstruction, as shown in the 

x(m)

y
(m

)

z(m)

Reconstructed points
Real world points
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overlapped binocular images in Fig. 10 (a) and Fig. 11 (a). 

The vegetation encroachment detection results are shown in 

Fig. 12 and Fig. 13, where the 3D reconstruction of points (a, 

b, c, and d) on power lines and feature points of the trees are 

drawn based on their 3D coordinates. The Y coordinate of the 

highest feature point of the trees indicates the height of the 

trees away from the ground in the coordinate system. The 

height measurements of the trees in cases 1 and 2 along with 

their errors are shown in Fig. 12 and Fig. 13, respectively. 

Based on the four data sets of measurements of the trees and 

their real heights in both cases (one set of data in Fig. 12 and 

three sets of data in Fig. 13), the overall root-mean-squared 

error of their height measurements can be calculated as 0.40 m. 

This can meet the actual application requirements of height 

measurements in a large-scale scene of power line corridors 

that are usually hundreds of meters. As in TABLE I, point a is 

the lowest point of the power lines in both cases and their 

heights are 16.92 m and 15.13 m, respectively. The vegetation 

encroachment is determined based on the height gap between 

the power line and vegetation. The height gap is 4.62 m in 

case 1 and 9.03 m in case 2. Both results don’t violate the 

minimum clearance distances of 500 kV and 230 kV lines in 

the NERC standard (i.e., 2.13 m and 1.22 m), respectively [3]. 

In addition to the tree growth, contacts between power lines 

and vegetation can be also resulted due to an increased line 

sag caused by load increases or snow. To accommodate these 

situations, vegetation clearance distance standards of utilities 

usually adopt larger values, which are usually in the range of 2 

m to 3 m for transmission lines in voltage levels from 230 kV 

to 500 kV in the U.S. [29]. Since the vegetation encroachment 

results do not violate these requirements as well, there is no 

alarm and maintenance work triggered in both cases.  

This monitoring system is able to be deployed in the power 

line corridors in terrains with elevation fluctuation, such as 

hills and valleys, since the vegetation encroachment is 

determined solely based on the height gap between the power 

line and vegetation in a coordinate system that is regulated 

based on a horizontal datum (the virtual ground in GCS). 

C.  Cost-effectiveness and Viability of Proposed System 

The traditional manned helicopter inspection costs an 

average of $870/km for each inspection that is required at least 

once per year by NERC [3, 30]. Applying the proposed 

stereovision system, ten cameras are needed per kilometer if 

considering a case in which five power towers are set with an 

average spacing of 200 m. The required surveillance camera in 

the market costs $250 on average and can easily function for 

ten years with basic maintenances [31]. Hence, the total cost 

of the proposed system is $250/km/year, which is much less 

than the cost of the traditional method $870/km/year [30]. 

With consideration of annual inspections, the proposed system 

has a slightly higher cost compared with the currently widely 

researched UAV inspection method that has an average cost of 

$156/km/year [30]. However, the proposed system allows 

constant surveillance, which can bring down the cost of the 

proposed system to be much less than the UAV inspection for 

frequent inspections that are required for areas with dense 

vegetation. For example, the cost of the proposed system will 

be $125/km for a semi-annual inspection and only $20.8/km 

for a monthly inspection.  

   
Fig. 10. Case 1: (a) Feature extraction and matching of the tree and line 

detection and (b) Epipolar constraints (c) Tree detection bbox  

Fig. 11. Case 2: (a) Feature extraction and matching of the tree and line 

detection and (b) Tree detection bboxes 

  
Fig. 12. Measurement results of case 1 Fig. 13. Measurement results of case 2 (RMSE: Root-Mean-Squared Error) 
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VI.  CONCLUSION 

An intelligent detection framework is proposed in this 

paper to detect the vegetation encroachment of transmission 

lines based on the image data monitored from towers with 

mounted binocular vision sensors. This framework includes 

the deep learning-based tree detection algorithm, the Hough 

transform-based power line detection algorithm, and the novel 

advanced SV algorithm. Their effectiveness is verified via a 

case study based on the monitoring data from a TSO.  

The results of the case study show that 1) the vegetation 

detection is achieved with the deep learning-based module, i.e., 

Faster R-CNN, 2) the power lines are effectively detected with 

the Hough transform-based module, 3) the height 

measurement of trees and power lines for the vegetation 

encroachment detection is achieved, and 4) the accurate 

localization in geography is also achieved. The proposed 

framework provides an accurate, cost-effective, and practical 

vegetation detection methodology, which can provide early 

warning services for the vegetation management of utilities to 

avoid potential contacts of vegetation and power lines. 
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