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SUMMARY

As part of the European renewable energy project launched about a year ago — “TWENTIES,” Work
Package 5 (WPS) is focused on optimal operation of AC/DC interconnected power systems, local
protection and control of High Voltage Direct Current (HVDC), and operation under normal and
emergency conditions. This paper reports the preliminary results obtained by University College
Dublin (UCD) on local protection requirements and control of HVDC offshore wind networks, in the
framework of WP5.

An off-shore wind farm integrated to an ac grid through Voltage Source Converter (VSC) based
HVDC transmission technology is studied in this paper. In this study, the wind farm side VSC
(WFVSC) uses an ac voltage control mode, which enables the collection of energy from off-shore
wind farms to be transferred to the dc link. To maintain the balance between the input and output of
HVDC link, the dc voltage needs to be controlled at a constant. This task is assigned to the grid side
VSC (GSVSC). Also, GSVSC can provide reactive power support for the ac grid to maintain the
voltage of the point of common coupling (PCC) at an expected level.

When the HVDC oft-shore wind system suffers an ac grid fault close to the PCC, say, a short circuit,
the PCC voltage severely declines. The reduced voltage will decrease the GSVSC power transmission
capability. Since the wind farm generation is not reduced instantaneously, the unbalanced power in
HVDC link has to be stored in dc capacitors. This in turn can lead to a serious dc overvoltage, which
may cause tripping of dc devices by its overvoltage protection. In a point-to-point HVDC system, this
will interrupt the transmission of off-shore wind power, resulting in a deficit in generation. It is likely
to bring voltage and frequency problems in the integrated ac grid.

The studied system has been developed in DIgSILENT, and simulation results of ac grid faults are
presented in this paper, including ac three-phase and single-phase short circuit faults. During an ac
grid fault, the ac grid experiences abnormal operation conditions, i.e., high ac fault currents and low ac
fault voltages, which might lead to a faulted performance in the dc side due to the interaction among
voltages, currents and power on the ac and dc sides. As the main protection, the ac grid protection is
required to accurately detect and locate the ac grid fault according to these abnormal features, and
rapidly isolate it. To avoid an undesirable operation of the dc side protection, the dc side protection
needs to be coordinated with the ac grid protection.
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1. Introduction

During the last decade, the installed capability of wind power dramatically increases at the average
annual growth rate of 29% [1]. This significant increase reduces fossil energy production and the
associated carbon emissions. In the utilization of wind power, off-shore wind is beginning to play a
significant role due to the better wind condition and saving in on-shore land. Some EU countries, such
as Denmark, UK and Ireland, are making a great effort in developing the off-shore technology. The
European Wind Energy Association (EWEA) has a goal to increase off-shore wind power to 40-50GW
by 2020 from 2 GW by 2009 in EU [1]. To meet this target, off-shore wind power capacity in EU
would reach an average growth in annual installation of 28% [2].

High voltage alternating current (HVAC) technology has been used to transmit off-shore wind farms
to on-shore power grid. Due to the high capacitance of shielded power cables, the length of ac cables
is limited by the charging current of the cable [3]. Since off-shore wind farms are usually large-scale
and far from shore, the HVAC technology may not be suitable for the off-shore wind power
transmission. Some research has shown that the HVDC technology is better suited [3]. Advantages of
HVDC technology include fully controlled power and fewer cables required [2, 3]. Based on the
power electronic switch technology, HVDCs are classified into line commutated converters (LCCs)
and VSCs. VSCs consist of full-controlled electronic switches, i.e., insulated-gate bipolar transistors
(IGBTs), which make it possible to independently adjust the active and reactive power. In addition, the
VSC based HVDC has no minimum short circuit levels and it is feasible to extend it to a multi-
terminal HVDC (MTDC) and develop the black start capability [4, 5]. Compared with LCC based
HVDC, VSC based HVDC is considered more suitable for transmission of off-shore wind power to
the on-shore grid.

The capacity of the planned or on-going off-shore wind farms is usually large. Some of them will
reach the level of several GWs [6]. Although MTDC technology has been proposed for the future off-
shore wind power transmission, the number of GSVSCs MTDC systems in the existing studies is
limited to one or two [7, 8]. This causes heavy loading of the ac local transmission grid near PCCs,
when bulk off-shore wind power is injected into the ac grid. If one of transmission lines is de-
energised due to a fault, it may in turn lead to overloading of other lines. This is likely to result in
cascading events in the integrated ac grid. In addition, the local grid will face other challenges, such as
upgrading of the local grid infrastructure, voltage and frequency stability problems, and new
requirements of protection systems. The security of the integrated ac grid needs to be identified.

The task of ac protection is to accurately detect and rapidly clear the ac grid fault. When a HVDC off-
shore wind network suffers an ac grid fault near the PCC, the ac grid protection is required to clear it
as soon as possible. Before the fault is cleared, however, the PCC voltage declines, which will lead to
the decrease of the power transmission capability of the GSVSC. Since the output from wind farms
cannot be reduced instantaneously, the unbalanced power between WFVSCs and GSVSCs causes
charging of the dc capacitors, resulting in a dc overvoltage. If the dc overvoltage endangers the safety
of HVDC devices, the dc side protection system is required to respond rapidly to protect costly
devices. If the overvoltage is not severe, the dc side protection is required to be coordinated with the
ac grid protection and avoid undesirable operations [9].

Currently, the dc protection research mainly focuses on the impact of dc faults and the relevant
protection solutions [10-13]. Based on protection devices, DC protection devices are classified into ac
devices, i.e., ac circuit breakers (AC-CBs), and dc devices, i.e., dc circuit breakers (DC-CBs). The
AC-CB is less costly and its technology is fully mature compared with the DC-CB [14]. With the
development of MTDC network, AC-CBs are no more sufficient to eliminate dc faults in a selective
way [15]. Some dc side protection devices, such as DC-CBs (including semi-conductor-CBs), have
been discussed. Reference [10] describes a relay coordination method, which is based on overcurrent
and dc voltage drop characteristics. A protection scheme of MTDC based on IGBT circuit breakers is
proposed in [16]. It also introduces the corresponding fault detection and location method. The work
of [13] involves an overcurrent protection scheme that utilizes VSCs as fast-acting current-limiting
circuit breakers. These dc protection schemes do not consider the influence of ac grid faults, and the
coordination between the dc and ac protection systems. This paper reports preliminary results on the
impact analysis of an ac grid fault on HVDC system and discusses the concept of coordinated
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protection between HVDC off-shore wind network and the ac grid. The control of HVDC off-shore
wind system and the relevant simulation results are also reported.

II. Test System

An off-shore wind farm based on induction generators (IGs) is connected to an ac grid through a
point-to-point two terminals bipolar HVDC link, as shown in Fig. 1. Shunt capacitors are connected at
the generator outlet to provide the reactive power support. Two dc cables are used to connect the
WEFVSC and GSVSC. WFVSC is used to collect power from off-shore wind farms to be transferred to
the dc side. GSVSC converts dc power received into ac and sends it to the ac grid. Also, GSVSC can
provide reactive support for the ac grid. The ac grid is a small portion of a North American
transmission grid. The load model in the test system consists of 50% static and 50% dynamic load.

Load 1
Bus2  Dus4 150 MW,
L » 30MVar

Bus_on Bus 6E |
110 kV xternal

wWind L £150kV Grid

X L | Grid side Bus 3
Farm side | I
VSC B L] vse < Q ) Bus 5 §§

Offshore wind T1
farm 300MW 110/161 kV

Bus 1
161 kV
Bus_off
110 kV

DC lines

Load 2
———» 150 MW,
30MVar

Fig. 1 Configuration of HVDC offshore wind network
III. System Control

As previously mentioned, the VSC-HVDC link is used to transmit off-shore wind power to the ac grid.
So far, VSCs for HVDC are mostly based on two or three-level technology with the pulse width
modulation (PWM) technology. To improve the dynamic performance and reduce the impact of
harmonics, new VSCs technologies, such as modular multilevel converters (MMCs), have been
developed. Independent adjustment of the active and reactive power in HVDC is achieved by current
control technologies that are classified into indirect and direct current controls. Indirect control is
based on the phase and amplitude control and direct control is based on synchronous rotating frame
current control [17]. As the direct current control uses current feedback, system dynamics usually have
a better performance than the indirect scheme [17].

A.  WFVSC controller

The VSC control strategy used to connect off-shore wind farms has been well documented in the
literature [18, 19]. The main tasks of WFVSC are to collect power from off-shore wind farms to be
transferred to the dc side. To collect all power from wind farms, WFVSC uses an ac voltage control
mode. As VSC has one more degree of freedom than the traditional LCC, frequency control of off-
shore wind farms is also used in VSC. The slip of IGs connected wind turbines depends on the
frequency of the ac system of wind farms. To simplify the control, the wind farm side frequency is
usually controlled at a constant. The simplified control configuration of WFVSC is shown in Fig. 2.
The wind farm is controlled as a voltage source with a closed-loop controlled magnitude (7}), a

constant frequency ( ) and phase angle (#). M is the modulation index of PWM control of the

WEFVSC. This is an indirect current control, which does not include a current feedback control loop.
When WFVSC suffers an overcurrent, the ac current limitation can only be indirectly achieved by
setting the WFVSC ac voltage or blocking the semiconductor switches of converters.
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Fig. 2 Simplified control configuration of WFVSC
B.  GSVSC controller

In HVDC link, a constant dc voltage can automatically balance the sending and receiving active power.
It does not need extra communication between the rectifier and inverter VSCs [18]. GSVSC is usually
assigned to control the dc voltage (7,.), which is to ensure that energy collected by the WFVSC is

transmitted to the ac grid. Also, GSVSC can provide reactive power support for the ac grid to maintain
the ac voltage (7, ) at an expected level. The control configuration is shown in Fig. 3. GSVSC uses a

current feedforward decoupling control in the synchronous d-q reference frame. The inner current
control equations are given as follows:
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where K;, and K, are the proportional and integral gains of the current controller. The superscript *

refers to reference values. The symbols, v, and v, are d, q axis components of the VSC ac side

voltage, respectively. The currents i, and i, are d, q axis components of the ac side current,

q

respectively. The voltages v, and v, are d, q axis components of the GSVSC outlet voltage,

q
respectively. The angular speed w corresponds to the synchronous d-q frame and inductance L is for
the commutated reactance.
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Fig. 3 Simplified control configuration of GSVSC
IV. AC grid faults study case

As shown in Section II section, the test system is a 300 MW wind farm based on IGs connected to an
ac system through a bipolar VSC-HVDC link, as shown in Fig. 1. The test system is developed in
DIgSILENT, a commercially available software tool. The HVDC topology consists of two 300
MW/300kV VSCs, 100 km dc cables and 100 uF dc capacitors. The test system of ac grid is a portion

of a North American transmission system, which operates at the voltage level of 161 kV.
A.  Three-phase ac short circuit

At 0 second, a three-phase short circuit fault is initiated at line 1-3. After 0.15s, the fault is cleared.
During the fault, the dc positive and negative voltages curves are shown in Fig. 4. When the line 1-3
suffers the three-phase short circuit, the PCC voltage is reduced to almost zero. DC positive and



negative voltages are increased rapidly to 1.08 p.u. After the fault is cleared, the HVDC control system
activates and dc voltages are recovered to a normal condition.
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Fig. 4 Three-phase ac short circuit simulation results
B.  Single-phase ac short circuit

A single-phase short circuit fault is initiated on line 1-3 at 0 second. After 0.15 seconds, the fault is
cleared. As the single-phase short circuit does not cause the PCC voltage to severely decline, most of
the GSVSC transmission capability is maintained. The small-scale unbalanced power does not lead to
a serious overvoltage. However, since the ac grid is in an unbalanced condition during the fault, this in
turn results in second order harmonics in the dc side due to the PWM control, which can be seen from
Fig. 5.
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Fig. 5 Single-phase ac short circuit simulation results

V. Protection coordination

To effectively protect every device in the power grid under different fault conditions, the protection
zones of different devices must overlap. Operation of the protective devices must be fast, reliable and
selective. A fast speed of response and high reliability are vital in order to limit the damage that can be
caused by a fault. In addition, protection must be selective so that only the faulted element is isolated.
Reliability is achieved by using high-quality equipment and redundant protection schemes for each
element called the main protection and back-up protection. To meet the requirement of the protection,
all protections in the HVDC network must be coordinated, which can be accomplished by
coordination between ac protection and dc protection, and coordination between operation times and
thresholds of all protective devices.

The ac grid fault simulation results are presented in Section IV. When the HVDC off-shore wind
system experiences a three-phase short circuit close to the PCC, the dc side encounters a severe
overvoltage. This might damage the insulation of dc devices and reduce the reliability of costly HVDC
system. To avoid these unnecessary damages, the dc overvoltage protection is required to rapidly
activate if the dc voltage exceeds the threshold of the overvoltage protection. The ability of the devices
to withstand overvoltage depends on the insulation capability of devices. The threshold of dc
overvoltage protection needs to be coordinated with the insulation parameters of switches and cables.
If the ac grid fault location is not close to PCC, the PCC voltage reduction will be modest. The small-
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scale unbalanced power between the receiving VSC and sending VSC does not cause severe
overvoltage to activate the dc overvoltage protection. However, this minor overvoltage condition may
be confused with other overvoltage cased by abnormal conditions on the dc side, such as an overload.
To selectively and reliably protect HVDC system, the dc protection system is required to accurately
distinguish ac grid faults from dc faults.

When an ac grid encounters an ac grid fault, say, a short circuit, the ac grid will experience abnormal
operation conditions, e.g., low voltages and high currents. According to these ac grid fault
characteristics, the ac protection is designed to detect the location of ac grid faults and isolate ac grid
faults. As the main protection, the ac protection is required to clear ac grid faults within a specified
duration. In the unusual case when ac protection fails to clear ac grid faults, the dc side needs to be
equipped with a backup protective function to protect HVDC networks from ac grid faults. Due to the
harmonic characteristics of the dc side under unbalanced faults, the dc side may adopt 100Hz
protection as the backup protection of ac grid faults. The 100Hz protection on the dc side is a
protection scheme against ac faults, which is used to judge an ac grid fault through detection of second
order harmonics on the dc side. To meet the selectivity and sensitivity of the protection, the operation
time of the backup protection for ac grid faults needs to be coordinated with the maximal clearing time
of the ac grid fault. Namely, the operation time of the backup protection should be reasonably longer
than the maximal clearing time of the ac grid fault. The ac transmission system uses the 3-zone
distance protection. In the ac grid, if the protection of Zone 1 fails to operate during an ac grid fault,
the dc side voltage can sharply increase before the operation of Zone 2. If the incremental voltage
poses a threat to the system device insulation, the dc side overvoltage will immediately activate to
isolate devices experiencing overvoltage, such as converters and dc cables, from the interconnected
system. The loss of dc cables might cause other healthy dc line(s) to become overloaded. In order to
relieve the overload, wind turbines may have to be tripped.

The incremental dc voltage might cause the off-shore wind farm bus voltage to increase during ac grid
faults, which is a risk to activate the overvoltage protection of wind turbine generator. Due to the high
capacity of off-shore wind farms, tripping of the wind turbines might cause voltage and/or frequency
problems, reducing the stability of the ac bulk grid. Furthermore, if both the ac grid protection devices
in Zone 1 and Zone 2 fail to clear the grid fault, the overvoltage on the wind farm side can be severe.
Therefore, it is necessary to identify ac grid faults which might, for given conditions, trip wind
turbines so that the system operator can be informed of such serious events during system operation
and be prepared to take proper actions.

V1. Conclusion

An off-shore IGs based wind farm connected to an ac grid through a VSC based HVDC link is studied
in this project. The corresponding operation principles and control strategy of VSC stations have been
described. Simulation results of ac grid faults close to PCCs in the studied system have been presented,
including three-phase and single-phase short-circuit faults. The performance of the system under
balanced and unbalanced grid faults has been analysed. Requirements of the dc protection under ac
grid faults and protection coordination between HVDC off-shore wind network and ac grid have been
discussed. As the ac and dc systems are connected via VSC station, the voltages, currents and power
of two sides interact. When the ac grid experiences a fault, the dc side will also be in abnormal
operation conditions, e.g., high dc voltage and harmonics. To reliably and selectively protect HVDC
off-shore wind network, the dc side protection needs to be coordinated with the ac grid protection.
Some preliminary conclusions about protection coordination have been presented. The detailed
coordinated protection design will be studied in the future.
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