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Abstract— With the rapidly increasing construction of 
power lines in complex terrains, vegetation encroachment of 
overhead power lines can cause severe consequences, e.g., 
wildfires and cascading failures. Therefore, it is significant to 
detect vegetation encroachment of overhead power lines to 
ensure secure and reliable operation of power systems. This 
paper proposes an automatic joint algorithm to fast and 
accurately detect vegetation encroachment of overhead power 
lines in real-time. This algorithm integrates a deep learning 
method, i.e., the region convolution neural network (Faster 
RCNN) into a stereovision algorithm to process the 2D image 
data captured by the vision sensors located on a power tower. 
The generated bounding boxes (bboxes) only can represent 
vegetation regions in 2D images that contain the features of 
vegetation. The stereovision algorithm is applied in this paper to 
process the bboxes in 2D images to generate the corresponding 
3D information for vegetation location, including the height of 
the vegetation. The proposed algorithm has been tested on the 
realistic vegetation encroachment image data from an utility.  
The results show that the proposed algorithm can fast and 
accurately detect vegetation encroachment of overhead power 
lines. 

Keywords—deep learning, vegetation detection, Faster RCNN, 
stereovision algorithm 

I. INTRODUCTION  
The reliable power supply greatly depends on secure and 

stable operation of power lines. In current power systems, 
overhead power lines are widely used in transmission and 
distribution systems as key components of power systems. 
With the rapidly increasing consumption of electric power, the 
operation environment of overhead power lines has become 
more complex especially in the undeveloped natural areas. 
The vegetation encroachment of overhead power lines poses 
severe threats to the bare conductors of overhead power lines 
due to the growth of vegetation and wind conditions. The 
accidents caused by the conflicts of external forces between 
the vegetation and overhead power lines have become the 
prominent issues, which can lead to serious consequences 
such as wildfires and cascading failures. 

In recent years, wildfires caused by short circuit faults of 
overhead power lines in vegetarian areas commonly happen. 
Among them, the Camp Fire in 2018 is the most destructive 
wildfire in California history and caused at least 85 casualties 
and destroyed 14,000 residences [1]. According to the 
investigation, the electric utility, i.e. the Pacific Gas and 
Electric (PG&E), was accused of being responsible for this 
catastrophe since wind-driven blazes was sparked by the 
PG&E-owned power lines. As a consequence of the $30 
billion liability, the PG&E announced bankruptcy in the early 
of 2019 [2]. To prevent this kind of catastrophes from 
happening again, a fast and accurate inspection method of 
vegetation encroaching power lines is strongly required.  

The traditional inspections are mainly conducted by 
manual methods, i.e. patrols on foot or helicopters. However, 
these methods demand much labor force and time. They 
usually have a high rate of false and missing judgments on the 
inspection of vegetation encroachment due to the limited 
human eyesight. Therefore, those traditional inspections 
cannot meet the requirements of secure and reliable operation 
of power lines with the rapidly increasing overhead power 
lines nowadays. To reduce the labor and time of inspection,  
vision sensors, such as, surveillance cameras, have been 
mounted on power towers to obtain image or video data for 
inspection. However, the received image and video data of 
overhead power line corridors from vision sensors are still 
processed manually in present.  

To improve the efficiency and accuracy of vegetation 
encroachment detection in power line corridors, several 
automatic methods have been discussed in the existing 
literatures. The airborne light detection and ranging (LiDAR) 
method has a good performance of detection of vegetation 
encroachment [3]. The work of [4] applied unmanned aerial 
vehicles (UAVs) for the LiDAR inspection to improve 
efficiency. However, the high costs of the light sensors and 
UAVs lead to great economic burdens. Alternatively, the 
image recognition received a great attention in the vegetation 
detection in power line corridors with advanced image 
processing technologies [5-6]. Some researchers studied on 
the application of image recognition on vegetation detection 
in overhead power line corridors using image data from drones 
and satellites [7-8]. The applied methods in those papers 
mainly focus on the recognition of the tree crowns in aerial 
images, which cannot achieve an accurate and efficient 
monitoring due to the long distance from satellites and the 
patrol routines [9]. In order to achieve the real-time 
monitoring of power lines, visions sensors are mounted on 
power towers to capture image and video data. However, it is 
very challenging to recognize vegetation in the image data 
received from vision sensors due to the complex backgrounds 
and wide variety of morphology of trees. To the best of the 
authors’ knowledge, this challenge has not been well solved 
yet. In recent years, deep learning has greatly improved the 
performance of image recognition and provides opportunities 
to overcome this challenge [10-11].  

To fill this gap, this paper proposes a joint algorithm that 
integrates a deep learning algorithm into a stereovision 
algorithm for online vegetation encroachment detection. This 
proposed algorithm is applied to detect vegetation in the 2D 
images captured by the vision sensors mounted on power 
towers. The deep learning algorithm used in this paper is the 
Faster RCNN, which is developed based on the regional 
convolution neural network (RCNN) and the Fast RCNN [12-
14]. Instead of using the selective search (SS) to propose 
region proposals, the RPN is proposed in the Faster RCNN to 
improve the detection speed greatly [15]. This paper applies 
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the Faster RCNN algorithm to process the 2D images to 
generate the bboxes, which represent the regions of vegetation 
in 2D images that contain the features of vegetation. In order 
to obtain the corresponding 3D information for the vegetation 
location, including the height of vegetation, this paper applied 
a computer vision algorithm, i.e. the stereovision algorithm to 
process the bboxes [16].  

This paper is organized as follows. Section II outlines the 
proposed algorithm and introduces the experimental prototype. 
Section III introduces the principles and process of the Faster 
RCNN. Section IV shows the testing results of vegetation 
detection and discusses the effectiveness of the proposed 
algorithm. Section V is the conclusion.   

II. METHODOLOGY AND EXPERIMENTAL PROTOTYPE 

A. Outline of the proposed algorithm 
The proposed joint algorithm mainly contains two parts, 

i.e. the stereovision algorithm and the Faster RCNN 
algorithm. The structure of the proposed algorithm is 
illustrated in Fig. 1. 

 
Fig. 1. Structure of proposed algorithm 

Firstly, in order to generate the 3D information of the 
target object, the stereovision model is built. The stereovision 
model can project information in 2D binocular images to 
corresponding 3D infromation. This model is constructed 
through the calibration of the binocular cameras based on 
Zhang’s calibration method [16]. This method uses a 
checkerboard to calibrate the cameras. Usually, the scale of 
the monitoring scene in power line corridors is very large. The 
distance between two power towers can be up to several 
hundred meters. As a result, a checkerboard is not practical for 
calibration in this large-scale 3D space. Therefore, this paper 
applies a calibration pole to form 2D planes in the large area.  

Then the binocular images are sent to the Faster RCNN to 
detect the regions of vegetation in the 2D images. The Faster 
RCNN mainly consists of two steps. In the first step, the RPN 
is used to generate bboxes representing region proposals of the 
target object. Afterwards, the Fast RCNN is used to classify 
and modify bboxes. At the end, the two sets of key points of 
bboxes of the highest score from 2D images are then sent to 
the stereovision model to generate the corresponding 3D 
information. 

B.  Experimental prototype 
In order to develop the stereovision model, the images of 

calibration objects need to be generated and processed using 
the calibration algorithm. This experiment is carried out to 
generate the calibration image data to develop the 
stereovision model. The experimental prototype is set up in 
an experimental laboratory. Binocular vision sensors are two 
surveillance cameras mounted on a DJ 300 power tower. The 
received images from those cameras are transmitted to the 

base station for analysis using a local area network (LAN). 
The bandwidth of the LAN is 100Mbps (megabits per 
second). In practice, the rate is usually 6~10MB/s. Since a 
picture captured from the camera is about 280KB with the 
size of 1920×1080 pixels, the possible maximum packet 
transmission time of a picture from the vision sensors to the 
base station is 0.046s. This time is nearly the same as the 
frame rate of the video from the surveillance cameras. 
Therefore, the LAN can support real-time detection of 
vegetation in power line corridors. 

In this paper, the image data are obtained on the 
operation platform in the base station by intercepting photos 
and recording videos. The cameras are set approximately 13 
meters high from the ground ， and two cameras adopt 
convergent stereopsis to ensure a shared view of overlooking 
the power line corridor. The experimental setup is shown in 
Fig. 2. 

  

 
Fig. 2. Experimental setup 

The calibration pole is stretched to 4 meters and placed 
on the ground vertically with a white marker on the point of 
each meter, which is extracted as calibration points. The pole 
is then placed transversely and longitudinally every 5 meters 
to form a matrix comprising 6 calibration planes shown as 
green in Fig. 2. With the extracted calibration points, the 
stereovision model consists of internal and external 
parameters of the binocular cameras can be calculated. It is 
noted that the reconstructed coordinate system is based on the 
left camera coordinate system in this stereovision model.  

III. VEGETATION DETECTION USING FASTER RCNN 
According to the proposed algorithm, the 2D information 

of the vegetation need to be generated to obtain the 
corresponding 3D information of the vegetation. In this paper, 
the Faster RCNN is applied to recognize the vegetation based 
on the features of vegetation and generate the bboxes that 
represent the vegetation regions in 2D images.  

A. Faster RCNN 
The Faster RCNN mainly consists of the RPN and the Fast 

RCNN. They both share all the data of the convolution layers. 
The structure of the Faster RCNN is shown in Fig. 3.  

 
Fig. 3. Structure of Faster RCNN  
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The RPN predicts the regions and identify the probability 
of the region containing a target object. Then region proposals 
of the target object are generated. They are sent to the Fast 
RCNN block for object recognition and detection. 

In the process of the Faster RCNN, binocular images are 
firstly sent to the shared conv layers to exact feature maps. The 
shared conv layers contain convolution layers, rectified linear 
unit (ReLU) layers, and pooling layers. The feature maps are 
shared with the subsequent RPN and fully connected (FC) 
layers [17]. In the RPN, a softmax layer is used to determine 
whether the region proposals contain the object, and then the 
bbox regression layer is used to modify the regions to obtain 
accurate proposals. The region of interest (RoI) pooling layer 
collects the input feature maps and proposals, extracts the 
proposed feature maps, and sends them to the subsequent FC 
layers in the Fast RCNN. Then the category and final exact 
position of the bboxes are obtained from the softmax and bbox 
regression layers, respectively. 

The defined CNN in this paper is pre-trained with the 
CIFAR-10 database including 50,000 images with 10 
categories [18]. This database is selected due to the small size 
of the images, which is 32×32 pixels. This can help to decrease 
the training time on a limited graphic processing unit (GPU). 
This paper develops a CNN, which consists of three parts. An 
image input layer is used in the first part of CNN to restrict the 
type and size of the input images. Then 3 convolutional layers, 
each has 32 5×5 filters and is followed by a ReLU layer and a 
pooling layer, are used in the middle part. The final layers 
consist of FC layers with 64 neurons and a softmax loss layer.  

B. RPN 
In the RPN, a sliding window as a 3×3 convolution kernel 

is used to slide on the feature map, and the center corresponds 
to a position on the map. In order to detect the object in 
different sizes and shapes, each sliding window are set to use 
3 different sizes and aspect ratios of anchor boxes in each 
position, which is shown on the right of the Fig. 4. 

  
Fig. 4. Anchors in RPN 

Then 9 anchors are generated in each position to predict 
the bboxes in different sizes and shapes of the input images. 
As a result, 9×H×W×N region proposals are generated, 
where the symbols H and W represent the height and width of 
the feature map respectively and the symbol N is the 
dimension of the feature map. Then the data of the region 
proposals are transformed to a N dimension feature vector to 
be fed into the two FC networks, i.e. the classification (cls) 
layer and the regression (reg) layer to determine the category 
and regress the bboxes of the anchors. The reg layer has 4×9 
outputs that have 4 coordinate parameters representing the 
location of the bboxes of the 9 proposals in the original graph. 

The cls layer has 2×9 outputs, which determines whether the 
original map area contains the object. The principle of this 
process are introduced as follows. 

The training of RPN is a process to minimize the loss 
function of RPN,which is represented in (1), 

 𝐿𝐿({𝑝𝑝𝑖𝑖}, {𝑢𝑢𝑖𝑖}) = 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖∗) +𝑖𝑖   

 𝜆𝜆 1
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

∑ 𝑝𝑝𝑖𝑖∗𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗)𝑖𝑖  (1) 

In which the symbol i represents the index of the anchor, the 
symbol 𝑝𝑝𝑖𝑖 represents the probability of containing the object, 
and the symbol 𝑝𝑝𝑖𝑖∗ represents the label of the anchor. In each 
position, labels are assigned to the anchors. The positive label 
represented by 1 is assigned to the anchor when the 
intersection-over-union (IoU) overlap of the anchor with a 
ground truth box (GT) is the highest or greater than 0.7. The 
negative label is assigned when the IoU of the anchor is less 
than 0.3. The symbol 𝑡𝑡𝑖𝑖  represents coordinates of the 
predicted bbox represented by (𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦 , 𝑡𝑡𝑤𝑤 , 𝑡𝑡ℎ), the symbol 𝑡𝑡𝑖𝑖∗ 
represents coordinates of the GT corresponding to the positive 
anchors, and the term 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖∗) represents the log loss over 
object and non-object categories, which is expressed by (2),  

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗) = − log[𝑝𝑝𝑖𝑖∗𝑝𝑝𝑖𝑖 + (1 − 𝑝𝑝𝑖𝑖∗)(1− 𝑝𝑝𝑖𝑖)] (2) 

and the term 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗)  represents the regression loss 
function of reg layer, which is expressed by (3). 

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖∗) (3) 

In which the symbol 𝑅𝑅 represents the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡ℎ𝐿𝐿1  function 
defined by (4). 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡ℎ𝐿𝐿1(𝑥𝑥) = � 0.5𝑥𝑥2,    |𝑥𝑥| < 1
|𝑥𝑥| − 0.5,     𝑠𝑠𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒 (4) 

The L1 norm loss function is chosen since it’s less sensitive 
to the outliers of data. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡ℎ𝐿𝐿1function adjusts L1 norm 
loss to be smooth on zero point to get only one derivative value 
for better converge results. The symbols  {𝑝𝑝𝑖𝑖} and {𝑢𝑢𝑖𝑖} 
represent the outputs of the cls and reg layers, respectively. 
The symbols 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 are the normalization value of the 
cls and reg layers, respectively. The symbol λ represents an 
average weight, which is with a default of 10 and is aimed to 
scale the outputs of the cls and reg layers to the same 
numerical level.    

C. Alternating training 
During the training of the Faster RCNN, the RPN and Fast 

RCNN are trained alternatively to share convolution layers. 
The first step is to train the RPN with the pre-trained network 
and the network model is updated. The second step is to train 
the Fast RCNN with the same pre-trained model, and the 
network is updated again, but the convolution layers are not 
shared yet. The third step is to initialize PRN training using 
the network model from the step two. Meanwhile, the shared 
convolution layers are fixed and unique layers of the RPN are 
fine-tuned. The fourth step is to fine-tune the unique layers of 
the Fast RCNN with the shared convolution layers that has 
been fixed.  
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IV. CASE STUDY 
A case study is carried out to verify the effectiveness and 

feasibility of the proposed algorithm. The image data received 
from the vision sensors mounted on a power tower are 
postprocessed with the proposed algorithm to generate the 
stereovision model and the trained Faster RCNN model. Then 
a test is carried out to verify the effectiveness of the models. 
The 2D images that contain features of vegetation are 
processed by the Faster RCNN algorithm to generate bboxes, 
which represent the vegetation regions. Then corresponding 
3D information are generated with the stereovision model for 
location and height measurement. The applied images for 
testing are realistic vegetation encroachment image data, 
which are from the power line monitoring system of an utility.  

A. Stereovision calibration  
With the extracted calibration points, the calibration is 

carried out to generate stereovision model. The visualization 
of external parameters of the stereovision model that represent 
the positions of the cameras and planes is shown in Fig. 5.  

 
Fig. 5. External parameters of stereovision 

Since the positions of the objects in the reconstructed 
coordinate system in Fig. 5 match with the real positions in 
Fig. 2, an effective stereovision model is accomplished. 

B. Vegetation detection 
The CNN is first trained with CIFAR database. Then for 

the training of vegetation detection, the online image samples 
of trees in different sizes are collected and processed manually 
into a training data set. A few training samples of trees are 
presented in Fig. 6.  

 
Fig. 6. Samples of tree data 

With the training data fed into the pre-trained network, a 
Faster RCNN detector is generated to be used for vegetation 
detection. The images applied for vegetation encroachment 
are captured from a realistic monitoring system.  

 
Fig. 7. Rectification of images with epipolar lines 

As shown in Fig. 7, images are firstly rectified with the 
epipolar lines to eliminate vertical parallax, which can 
simplify the reconstruction calculation of stereovision [16]. 
After the images are fed to the Faster RCNN detector, several 
region boxes are generated, and the corresponding bboxes 
with the highest score are selected for reconstruction by the 
stereovision, which can be seen from Fig. 8.  

 

 
Fig. 8. Region detection of vegetation using Faster RCNN 

In Fig. 8, the corresponding regions of the vegetation are 
successfully detected. 6 key points in the corner and middle of 
the boundary lines of the region boxes are selected as  feature 
points of the vegetation in 2D images. Then the key points are 
processed with the stereovision model to generate the 
corresponding 3D information of the vegetation. The image 
coordinates of key points are calculated with the coordinates 
(x, y, w, h) of the bboxes, which represent the coordinates (x, 
y) of the upper left corner points, the width coordinate (w), 
and the height coordinate (h) of the bboxes. The results of 2D 
image coordinates and 3D coordinates of the key points are 
shown in TABLE I. 

TABLE I.  MEASUREMENT RESULTS OF KEY POINTS 

Points 
Image coordinates (pixel) 

3D coordinates (m) 
Left camera Right camera 
x y x y x y z 

1 166 189 11 195 -7.4131 -1.3642 28.2804 

2 306 189 122 195 -3.2124 -1.2034 24.9227 

3 446 189 234 195 0.1023 -1.0751 22.2454 

4 166 478 11 477 -7.7001 6.1394 29.1216 

5 306 767 122 758 -3.3890 12.1033 25.7474 

6 446 478 233 477 0.0843 4.7456 22.4961 

 

 
Fig. 9. 3D coordinates of key points in reconstruction coordinate system 

It can be seen that the 6 key points are successfully 
reconstructed as shown in Fig. 9. The reconstruction 
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coordinate system is based on the left camera coordinate 
system. In the 3D coordinates shown in Fig. 9, the coordinates 
of the camera are set as (0, 0, 0). The Fig. 9 also shows that 
point 5 at the bottom of the tree is 30 meters away from the 
camera on the tower, which matches with reality. Considering 
the optical axis (i.e., the z axis) is not parallel with ground, so 
the reconstructed coordinate system is also not based on the 
ground, which indicates the X-Z plane is not parallel with the 
ground and the y axis is not vertical to the ground. Therefore, 
the tree is “floating” in this reconstructed system instead of 
vertically standing on the ground. As a result, the height of the 
tree needs to be calculated by calculating the distance between 
the top point 2 and bottom point 5. In (5), the symbol Dab is 
used to represent the distance between two points a and b, 
whose coordinates are represented by (xa, ya, za) and (xb, yb, 
zb), the distance between 2 points can be obtained below,  

 𝐷𝐷𝐷𝐷𝐷𝐷 = �(𝑥𝑥𝐷𝐷 − 𝑥𝑥𝐷𝐷)2 + (𝑦𝑦𝐷𝐷 − 𝑦𝑦𝐷𝐷)2 + (𝑧𝑧𝐷𝐷 − 𝑧𝑧𝐷𝐷)22  (5) 

After calculation, the distance between point 2 and point 5 
is 13.3334 m. Comparing with the realistic measurement of 
height of the tree that is 12.9 m, the result only has an error of 
3.36 %. Since the shape and the background of the power lines 
are both simple, the features of the power lines can be easily 
detected from the 2D images. Through reconstruction, the 
height of the power lines can be easily obtained. With the 
proposed algorithm, the height of the tree is calculated. 
Comparing the heights of the vegetation and power lines, the 
vegetation encroachment of the power lines can be effectively 
detected.  

V. CONCLUSION  
The vegetation encroachment poses a severe threat to the 

safe operation of overhead power lines. To solve this problem, 
this paper proposed a joint algorithm that integrates the Faster 
RCNN algorithm with the stereovision algorithm for 
vegetation encroachment detection in power line corridors. 
Based on the binocular images from vision sensors mounted 
on the power tower, the bboxes in 2D images that contain 
features of vegetation are obtained through the Faster RCNN 
algorithm. Then the corresponding 3D information for 
vegetation location are generated by the stereovision model 
based on the bboxes in 2D images. The results showed that the 
proposed joint Faster RCNN and stereovision algorithm can 
fast and accurately detect vegetation encroachment in power 
line corridors.  
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